

Geum River Basin

- > TMDL is set up from 2005
- > Identifying Regional Population, Industrial, and Irrigational Waste Load
- > Waste Reductions & Allocation
- For Water Quantity & Quality Control Basin Water Resources Management is Important

Head Water & Point Load

ĸ

Qual2E-Plus Model

Improve Qual2E

- Most widely used river water quality model
- 15 Water quality parameters are simulated
- Reach, Element, Sources & Sinks
- Steady state model
- Flat-file data format
- Embedded in watershed model (BASIN)
- Does not support windows environment

KORiv1 Model

- > Unsteady WQ model
 - Independent Model Run
 - Determine flushing discharge for contaminant spills
- Based on CE-Qual-Riv1
- > Hydraulic module
 - Full dynamic equation (St. Venant eqns)
 - Continuity & momentum equation
 - 4-point implicit Preissman scheme
- > Water quality module
 - Holly-Preissman for convection term
 - Similar kinetics to QUAL2E
 - Modeling of 12 WQ parameters (DO, CBOD, N groups, P groups, Mn, Fe, Algae, etc)

SPODALLARRA I	18.5 Inter segments () 1 - () Inter being see
IS ROUTE TARASS !	And today call (provide the second rect)
And And Manager and	

In some series of

Discharge Increase for WQ Improvement

100

Application Examples

> Scenario Setup

- Maintenance of Water treatment plant in the Kap stream
- Releasing BOD 100 ppm, 620,000 ton/day
- Estimate discharge release to maintain BOD concentration below 3 ppm
- Inform water intake system at Downstream

Model Summary

> Qual2E-Plus & KORiv1 Model

- Steady and unsteady water quality model
- In the steady state, the results are very similar
- · Both are developed under window environment

> KORiv1

- · Useful for the accidental spill at downstream
- Determine adequate discharge for flushing
- · Effect of water quality improvement
- Compute channel maintenance flow

