

Generals of Qual2E-Plus

Introduction

- Water Quality Model for River Water Quality
 - Steady State (Qual2E-Plus)
 - Unsteady State (Koriv1-Win)
- Assume Lateral, and Vertical Mixing is Completed
- Simulating 15 Water Quality Constituents
- Multiple Discharge, Withdrawal, Tributaries, Inflow and outflow

Transport

advection

 Based on the assumption of Steady State Varied flow. Flow Balance is

$$Q_{i-1} \pm Q_{x,i} - Q_i = 0$$

1. Power Equation for Velocity and Discharge.

 $U = aQ^b$ $H = \alpha Q^\beta$

2. Manning Formula for Channel and Flow.

$$A_{C} = \frac{Q}{U}$$
 $Q = \frac{1}{n} A_{C} R^{2/3} S_{E}^{1/2}$

Dispersion

Longitudinal Dispersion.

$$E = 3.11 KnUH^{5/6}$$

where,

E = Longitudinal Dispersion (m²/s), H = Depth (m)n = Manning, K = Parameter

$$U = Velocity$$

where,

$$K = \frac{E}{HU^*}$$

 U^* = shear velocity (m/s)

Problem #1 BOD & DO Simulation

Objectives

- Acquire an understanding of BOD & DO relationships, Basic modeling scheme
- Problem description
 - 2 tributaries act as point sources, find out BOD and DO concentrations of main stream

Kinetics

□ Carbonaceous BOD (CBOD) and DO

$$\frac{dL}{dt} = -K_1L - K_3L$$

and

$$\frac{do}{dt} = -K_2(o_s - o) - K_1L - \frac{K_4}{L}$$

Where,

$$\begin{split} L &= \text{CBOD (mg/l)}, & \text{o} = \text{DO (mg/l)} \\ K_1 &= \text{BOD decay (d^{-1})}, & K_2 &= \text{reaeration (d^{-1})} \\ K_3 &= \text{BOD settling (d^{-1})}, & o_S &= \text{Saturated DO (mg/l)} \\ K_4 &= \text{Sediment Oxygen Demand (mg^{-2}d^{-1})} \end{split}$$

D Reaction Rate K is Temperature related

Reach Configuration

- WWTP is located at 100 km (KP100), and tributary is located at KP60 from downstream
- decay rate of CBOD K₁ is 0.5d⁻¹ at 20 ° C
- At Downstream 20km from WWTP CBOD settling rate K₃ is 0.25 d⁻¹, SOD (Sediment Oxygen Demand) is 5gm⁻²d⁻¹
- O'connor-Dobbins for reaeration rate K₂
- Temperature

Parameter	KP>100	KP100-80	KP 80-60	KP<60
Temp(°C)	20	20.59	20.59	19.72
· · · · · · · · · · · · · · · · · · ·		20.00		

Stream System (Stream Reach) LET KERDERN ALTERNATION FRAMEWORK BERTER 2.16 a geroleura tatat Mann Barr Blane Aner is + - Charl and at 191421 HOLF TOPHAS Stream System Brage Read Type Including of Female States 1.F 10.00 And Participant Date an make had weather the marries - [00.73++ [3++] en l'america l'arte Temporal states (or service right) research also results also finances (inter-right) (states and results (or set -------è i - -2 And Challin Case in. 1.1 -Anto D. Da

Forcing Data (Initial Conditions)

Constantion Balling Annual Statement	[MG2[MM00] Internet of Level And Andres								
United Valley (Deal Valley) United Knowless United Knowless United Knowless United Knowless United Knowless United Valley Market (United Knowless United Valley) Market (United Knowless United Valley Market (United Knowless United Valley United Val	999-11 	6000 614 614 614 614 614 614	*******						
A STATE			4						

12.0

Problem #3 Eutrophications

Objectives

- Understanding Interactions of BOD & DO with other water quality constituents
- Problem
 - Enable N, P, and Algae and find out D0 & BOD concentration and compare with the results of previous run

Geum River Application

Simulation Configuration

- From the Daechung Dam to Estuary (130.47km 16 reaches)
- Reach velocity and Depth is given regression analysis using HEC-RAS
- Temp, BOD, COD, Algae, N, P, and DO
- Pollution sources:
 - 10 tributaries and 3 WWTP as Point Source
- Pumping station, drinking water station data
- Assuming 50% operation
- return ratio of Irrigation water is 35%
 - Incremental Inflow

Problem #4 Discharge Estimation

Objectives

 Understanding water quality control by increasing the reservoir discharge to find improve downstream water quality improvement

Problem

Find discharge release to maintain BOD concentration below 3 ppm at downstream water intake system

Description

Starting from 10 CMS and check the BOD concentration at node#76 where the water intake system is located.

