Water Resources Model for Kala Oya Basin

Lalitha P. Senevirathne

Location of Kalawewa basin

Kalawewa basin

Area 2825 km² Annual Average Rainfall 1298 mm Annual Average Rainfall varies 1700 mm at South Eastern part 1200 mm at Northwestern part Local Inflow to the basin 343 MCM /yr Diversion to the basin 448 MCM/yr Average runoff factor 11%

Objectives of a model in water resource planning

- To Understand:
 - The Existing System
- To make predictions on
 - The implication of various policies
 - The Effects due to change in hydrology or change in components
 - The success and failure rates or the risks of the projects
 - Flow in and out of the lakes

Features

- Developed by South Florida Water Management District
- Written on Linux operating system
- The governing equations :
 - two dimensional Saint Venant equations without the inertia terms,
 - * the 2-D ground water equations
- Uses a Hydraulic Simulation Engine (HSE)

HSE

Has the Capability to simulate;

2-Dimensional Overland Flow
2-Dimensional Ground water flow
1 Dimensional Flow in canal Network
Flow in and out of the lakes

Fully integrated, all the equations are solved simultaneously

Major Components

- Unstructured Triangular Mesh Generated by GMS
- Water Bodies reservoirs, cells etc. contains water but does not move it
- (*Known objects that contain known quantities of water*)
- Water Movers Canals, Spills, Sluices, seepage paths

(Known objects that determine the exact quantity of water passing between them)

The steps.....

- Generation of a mesh for the Kala-Oya basin.
- Creation of topographical data set
- Creation of a canal network data file
- Creation of rainfall data sets using DSSVUE
- Creation of GIS coverage for the mesh area.
- > Creation of pseudo cell layer
- Creation of Index files to be used in XML
- Forming the components of the model
- Running the model
- Calibration and testing

Pseudo cells

- To simulate the local hydrology within an area
 - holds the same water content placed in their own macro-hydrological settings
- used to simulate
 - agricultural patterns
 - small creek and tributary flow
 - urban hydrology etc.
- created to suit the micro catchments
 water budgeting within a pseudo cell;

$$R_{rech} = P - E + I - \frac{dU_s}{dt} - \frac{dD}{dt}$$

Data Needs

 Topographical Data
 River and Canal cross section data
 Reservoir stage- area and Stage-Capacity data

Data Needs Contd..

Time Dependent Rainfall Data Evapo transpiration data Inflow and outflow time series data (Including Diversion) Water level boundary condition data

Theisson Polygons with Rainfall stations

Data Needs Contd.. Manning's roughness Crop coefficients Land use related parameters Storage coefficients of soil layers Transmissivities and conductivities of soil layers Information of major structures

Land use categories within the basin

- Coconut
- Other plantations
- Paddy
- ✤ Garden
- ✤ Marsh
- Scrub
- Rock
- Tanks
- Forest
- Grassland

Data Needs Contd..

For Calibration
 Runoff data
 Ground water levels

Out Put Options

- Global Monitor
- Budget Package
- Cell Monitor -Can monitor individual cells
- Segment Monitor- Can monitor individual Canal segments

Present Status

Data Entering Completed Topographical data Reservoir data Land use data Rainfall data Evapo transpiration data Runoff data Ground water levels Canal Data Inflow and outflow time series data (Including Diversion)

Visualization of results using TECPLOT

Thank You ..