OVERVIEW OF PINATUBO LAHARS & RELATED FLOODING IN CENTRAL LUZON

MARITON V. BORNAS, MSc.

Philippine Institute of Volcanology & Seismology C.P. Garcia Ave., Univ. of the Philippines Campus Diliman 1101 Quezon City http://www.phivolcs.dost.gov.ph

OUTLINE

- 1. The 1991 eruption & watershed impacts
- 2. Lahars: definition, source, mechanism, deposition
- Lahars, siltation and flooding in the Pampanga River Basin
- 4. Current mitigation measures
- Current status and future outlook

THE 1991 PINATUBO ERUPTION

- 5.5 km³ Pyroclastic
 flow deposits, 50%
 reworked as lahars:
 - Pasig-Sacobia-Abacan
 - O'Donnell
 - Sto. Tomas-Marella
 - Maraunot-Balin-Baquero-Bucao
 - Porac-Gumain
- 3.7-5.3 km³ Ashfall deposits, lahar source:
 - Porac-Gumain
 - Maloma
 - Tanguay

PINATUBO VOLCANO: Pyroclastic Deposits of the 1991 Eruptions

Other Pyroclastic Flow Impacts:

- Burial of river valleys in thick erodible ash-
- Loss & disturbance of natural drainage
- Incineration & stripping of vegetation

Sediment-laden streamflows:

- Fluid phase: frictionless mixture of water & fine sediment
- Granular phase: coarse particles (pebbles-boulders)

Flow behavior:

- Coloumb (viscous) flow
- Physically complicated

Kinds of lahars:

- Debris flow: solid fraction >80% by weight or >60% by volume
- Hyperconcentrated streamflow: solid fraction 20-60% by weight, 40-60% by volume

Source material:

 Pyroclastic & pre-existing lahar deposits

Triggering:

- Rainfall, often aided by landslides in the upper slopes
- Lake breakout (e.g. 1994 Sept Lake Cutuno; 2002 Crater Lake)

NORTHWEST CRATER RIM

Impacts:

- Burial, washout, riverbank erosion cutoff, isolation
- Long-term siltation & flooding due to clogging of drainages

Estimated Annual Sediment Volumes:

- 2.5 billion m³ eroded from all slopes in 10 years
 - Pierson and others, 1992

Year	Estimated Sediment Yield (in Mcm)		
1991	500-1,000		
1992	300-500		
1993	180-350		
1994	110-210		
1995	65-110		
1996	39-81		
1997	23-48		
1998	14-29		
1999	8-17		
2000	5-11		
Total	1,240-2,450		

LAHARS IN THE PAMPANGA RIVER BASIN: Sacobia-Abacan-Pasig River System

700 million m³ lahar volume (eroding 500 million m³ pyroclastic flow deposit)

Abacan:

Lahars ceased after secondary explosions in the catchment beheaded its watershed in 1992

Sacobia-Bamban:

Lahars ceased after secondary explosions in the catchment during Typhoon Kadiang in 1993 led to watershed piracy by the Pasig-Potrero

Pasig-Potrero:

1 M m³ pyroclastic flow deposits still in its watershed, making future lahars possible

Pasig-Potrero River Lahars: 1991-95

Pasig-Potrero River: Sedimentation & Flooding Impacts

- Approximately 400 million m³ pyroclastics/ sediments remobilized by lahars to date
- Lahars in the upper-distal river reaches (Porac, Bacolor, San Fernando, Sta. Rita); numerous casualties, loss of habitation & livelihood
- Siltation and backflooding in communities in lowermost reaches (San Fernando, Mexico, Minalin, Sto. Tomas, Masantol, Macabebe); long-term and persistent drainage problems

Sacobia-Abacan-Pasig River System:

- Ca 700 million m³ potential lahar volume (all sources)
 - Pierson and others, 1992

Porac-Gumain River: Sedimentation & Flooding Impacts

- 50 million m³ of pyroclastic flow (PF) deposits, ~20 million m³ ashfall deposits
- All PF deposits, ashfall and some old pre-eruption sediments along channels remobilized by rainfall as lahars in 1991
- Sediments delivered to lowermost reaches (Floridablanca, Lubao)
- Lower Porac-Gumain distributaries choked with cohesive sediments, causing flash floods, backflooding (Lubao, Guagua, Sasmuan, Floridablanca, Dinalupihan, Orani, Hermosa)

Lahars & Siltation in the Pampanga River Basin

1992

CURRENT MITIGATION MEASURES

Mapping of lahar hazards zones:

- 1991-2004: PHIVOLCS Lahar Program
- 2008: UNDP-READY Project (NDCC)
- Application to land use and development by site-specific hazards certicification

Field assessments as needed

Public education:

- Emphasis on the application of hazards maps as deterrent to habitation in risk areas
- Refresher of past and reminder of still existing hazards

2004 Pinatubo Volcano Lahar Hazards Map

Lahar Hazards Classification

PHIVOLCS

Lahar Hazard Classification Scheme

Following Tuñgol (2002)

Classification is based on *highest probable* hazard (lahar hazard is greater than flood hazard). Forecast of probability/frequency of occurrence is based on geological-historical precedence, sediment yield trends, erosion rates, triggering rainfall, physical modelling, *etc.*

Zone	Hazard classification	Description of hazard	Areas included	Land use restrictions for urban development
1	High lahar hazard	High probability/frequency of occurrence of large-magnitude lahars (>10 M m ³ per event; <i>Please see Note 2</i>) and sediment- laden (muddy) streamflows.	Main lahar channels/valleys; upstream portions of lahar fans	Not fit for human settlement.
2	Moderate lahar hazard	Low probability of occurrence of large-magnitude lahars; moderate to high probability of small- magnitude lahars; high probability of sediment-laden flows.	Proximal and medial portions of main lahar fan	Human settlement not recommended, but may be allowed subject to prior engineering geological investigation and engineering protection.
3	Low lahar hazard	Low probability of occurrence of small-magnitude lahars; high probability of sediment-laden flows.	Distal portions of lahar fans.	Settlement may be allowed with adequate flood protection; lahar- warning systems must be vigilantly observed.
4	Muddy streamflow	High probability of sediment- laden streamflows.	Alluvial plains and deltas downstream of lahar fans along the direct path of flows	Settlement may be allowed with adequate flood protection and flood warning system.
5	Backflooding or water impoundment	High probability of flooding due to drainage blockage.	Areas whose drainage systems are blocked by lahar- affected waterways.	Settlement may be allowed with adequate flood protection and flood warning system except in deep water impoundments.

CURRENT STATUS & FUTURE OUTLOOK:

- Habitation returning to areas prone to lahars (e.g. w/in the Megadike System)
- Lack of through-going drainage in the Pasig-Potrero
- Quarrying activities: should promote active channel flow away from flood control stuctures

Pasig-Potrero River System

Channel shifting reflects hydraulic instability, changing risk areas

CURRENT STATUS & FUTURE OUTLOOK:

- Small-volume (<10 million m³) lahars can still be triggered by rainfall of 100-year flood in the Pasig-Potrero; lahar hazards persist
- Siltation in the Pasig-Potrero, Porac-Gumain, Sacobia-Bamban and Abacan will persist, decreasing channel and sediment-delivery capacities
- Long-term backflooding in the Pampanga River Basin w/ continuous sediment delivery to the downstream areas

THANK YOU!

Please visit us at: www.phivolcs.dost.gov.ph